Supplementary information

Table S1. Overview of marine ecosystem models included in the ensemble projections (modified from Tittensor et al. (2018a) and Lotze et al. (in

20 review)).

Fish-MIP model	Model description	Key ecological	Spatial and temporal scale	Vertical resolution	Taxonomic scope	Key
		processes	for Fish-MIP simulations			reference
BiOeconomic mArine Trophic Size-spectrum (BOATS)	Size-structure model, that combines marine biogeochemistry with size- based trophic theory and metabolic constraints to calculate the production of commercially-harvested fish across multiple size spectra.	Applies empirical parameterizations to describe phytoplankton community structure, trophic transfer of primary production from phytoplankton to fish, fish growth rates, and natural mortality of fish. No direct or passive movement of fish, larvae or eggs between grid cells considered.	1 x 1° grid Monthly mean timestep	None (2- dimensional domain). NPP is vertically-integrated through the water column. Temperature changes with SST.	3 size groups (small, medium, large) defined by their asymptotic mass, representing all commercial fish.	Carozza et al. (2016)
Macroecological Model	Static size-structure model. Uses minimal input parameters together with ecological and metabolic scaling theory to calculate mean size composition and abundance of marine animals (including fish).	Simple characterization of marine ecosystems in terms of body mass distribution and marine animal abundance based on estimates of predator- prey mass ratios, transfer efficiency and changing metabolic demands with body mass and temperature. Animal movement is not included.	1 x 1° grid Annual mean timestep	Single vertical (surface-integrated) layer.	180 body mass classes. Species are not resolved.	Jennings and Collingridge (2015)
Dynamic Pelagic Benthic Model (DPBM)	Dynamic size-and trait based model. Incorporates a pelagic predator size- spectrum with a benthic	Individual processes of predation, food- dependent growth, natural mortality, and	1 x 1° grid Monthly mean timestep	2 vertical layers (sea surface and sea floor). No vertical transport or	1 pelagic predator and 1 benthic detritivore size spectrum, with	Blanchard et al. (2012)

	detritivore size-spectrum.	reproduction give rise to		movement.	100 size classes	
	L L	emergent size spectra for			each.	
		each functional group				
		(pelagic predator and				
		benthic detritivore).				
Dynamic	Species distribution model	Population dynamics is	0.5 x 0.5° grid	Vertical layers (sea	892 commercial	Cheung et al.
Bioclimate	based on bioclimatic	dependent of habitat	Annual mean ocean conditions	surface and bottom)	fish and	(2011)
Envelope Model	envelopes (niche) defined	suitability and movement		defined by species	invertebrate	、 <i>`</i>
(DBEM)	for each species. Simulates	of adult species driven		niche preferences.	species.	
× ,	changes in species	by a gradient of habitat		T	T	
	abundance and carrying	suitability and population				
	capacity under	density. Larval dispersal				
	environmental change.	is driven by currents and				
	Carrying capacity is a	temperature. Growth,				
	function of the environment	reproduction, and natural				
	and species' habitat	mortality are dependent				
	preferences.	on oxygen, pH, and				
	-	temperature.				
EcoOcean	Trophodynamic model,	Combines a food web	1 x 1° grid	Vertical layers	51 trophic	Christensen
	based on species interactions	model comprising a	Monthly mean timestep	defined by food	biomass groups;	et al. (2015)
	and energy transfer across	mass-balance component		web interactions	including all	
	trophic levels. Ecosim-with-	(Ecopath; input: biomass,		and habitat	trophic level and	
	Ecopath (EwE) framework	production/biomass ratio,		preference patterns;	taxonomic groups	
	designed to evaluate the	consumption/biomass		vertical movement	(marine	
	impacts of fisheries and	ratio, diet composition,		and transportation	mammals, birds,	
	climate change on marine	catches), a temporal		through the	fish, invertebrates,	
	resources and ecosystems.	dynamic predator-prey		establishment of	primary producers	
		component (Ecosim),		trophic links and	and bacteria)	
		and a spatio-temporal		the generation and		
		dynamic component		consumption of		
		which is a function of		dead organic matter		
		grid cell specific habitat		linking pelagic		
		attributes i.e. pH, water		organisms to		
		depth, temperature, and		demersal and		
		bottom type (Ecospace).		benthic organisms.		
Apex Predators	Composite (hybrid) model.	Size-based predation,	1 x 1° grid	3D explicit vertical	Explicit size-	Maury (2010)
ECOSystem	3D dynamic energy budget	food- and temperature-	Monthly mean timestep	movement	based	
Model	Eulerian model of size-	driven growth,		considered.	communities	

	(APECOSM)	structured marine populations and communities, based on individual environmentally driven bio-energetics, trophic interactions and behaviors, that are upscaled to populations and communities.	reproduction and senescence. Includes environmental impacts on vertical and horizontal movements and schooling.		including 3 communities (epipelagic, migratory, mesopelagic); 95 species length classes and 100 size classes	
21						
22						
23						
24						
25						
26						
27						
28						
29						
30						
31						
32						
33						
34						
35						
36						

- **Table S2.** Overview of layer configuration and selected forcing variables used in the marine ecosystem models included in the ensemble projections.
- Forcing variables were provided by the two Earth system models GFDL-ESM2M (1° by 1° degree grid cell, 50 depth levels) and IPSL-CM5A-LR (1°
- by 1° degree grid cell, 31 depth levels). Layers included surface, bottom, depth-integrated surface to bottom, or depth resolved, depending on each
- 40 ecosystem model's requirements.

Fish-MIP	Depth	Current	Sea	Dissolved	NPP -	Phytoplankton	Zooplankton	pH	Salinity	Total	Ice	Mixed
model	integration	speed	temperature	oxygen	primary	carbon conc.	carbon conc.			alka- linity	coverage	layer
				conc.	carbon					minty		aeptii
					production							
BOATS	Integrated over full water column	N/A	Upper ocean temperature (average of upper 75m)	N/A	Depth integrated primary production (full water column)	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Macroeco- logical model	Integrated over full water column	N/A	Sea surface temperature (0-200m)	N/A	Depth integrated primary production (assumed to be allocated to the mixed layer depth or euphotic depth if	Large and small phytoplankton	N/A	N/A	N/A	N/A	N/A	Areas shallower than mixed layer depth (or euphotic depth if deeper) treated as productive zone

DPBM	2 layers, surface (0- 100m) and bottom.	N/A	Sea surface and sea bottom temperature	N/A	Depth integrated primary production.	Large/ small phytoplankton	N/A	N/A	N/A	N/A	N/A	Mixed layer depth incl.
DBEM	Vertical dimension is dependent on species specific min/max depth limits	Zonal and meridional velocity	Sea surface and sea bottom temperature	Dis. oxygen included	Depth integrated primary production.	Large/ small phytoplankton	N/A?	Sea surf ace pH	Sea surface and sea bottom salinity	N/A?	Ice coverage incl.	N/A
EcoOcean	Vertical dimension is dependent on depth distribution from species/ functional groups	N/A	Sea surface (150 m)	N/A	N/A	Large/small phytoplankton	Large/small zooplankton	N/A	N/A	N/A	Ice coverage incl. (not floating ice)	N/A
APECOSM	3D depth- resolved	Zonal, meridional and vertical velocity	Vertically (3D) resolved sea temperature	Dissolved oxygen included	N/A	Large/small phytoplankton	Large/small zooplankton.	pH incl ude d	N/A	Turbu- lent mixing incl.	Ice coverage incl.	N/A

Table S3. Overview of projected changes in total marine animal biomass under climate change
(Emissions scenario RCP2.6 and RCP8.5) for individual ecosystem models and ocean basins. All
changes are represented as the average of 2090-2099 relative to the average of 1990-1999. Light
grey shading: changes <5%; grey shading: changes between 5-10%; dark grey shading: changes
>10%.

Ecosystem model	Ocean basin	RCP 2.6	RCP 8.5
APECOSM	North Atlantic Ocean	-11 19%	-15 67%
III LEODIN	South Atlantic Ocean	-3 65%	-9 19%
	North Pacific Ocean	-2 81%	-10 50%
	South Pacific Ocean	-2.81%	-9 22%
	Indian Ocean	-1.36%	-9.44%
	Southern Ocean	-1.06%	4.53%
	Arctic Ocean	2.22%	-12.66%
ΒΟΔΤS	North Atlantic Ocean	-16 42%	-39 51%
DOMIS	South Atlantic Ocean	-9 69%	-29.95%
	North Pacific Ocean	-12 22%	-37.97%
	South Pacific Ocean	-10.12%	-27 29%
	Indian Ocean	-10.96%	-31 53%
	Southern Ocean	-0.81%	4 31%
	Arctic Ocean	23.78%	17.68%
FcoOcean	North Atlantic Ocean	-8 78%	-73 84%
Leooeedii	South Atlantic Ocean	1 66%	-0.76%
	North Pacific Ocean	-15 25%	-21.96%
	South Pacific Ocean	-1 30%	-5 99%
	Indian Ocean	0.43%	-3.35%
	Southern Ocean	-3.50%	8.95%
	Arctic Ocean	12.24%	13.70%
DBFM	North Atlantic Ocean	-12 00%	-42 96%
DDLM	South Atlantic Ocean	-9.87%	-8 73%
	North Pacific Ocean	-2 17%	-16 34%
	South Pacific Ocean	-9.97%	-34 34%
	Indian Ocean	-3 53%	-36.08%
	Southern Ocean	-7 53%	91.68%
	Arctic Ocean	239.07%	491.57%
	North Atlantic Occor	67404	18 600/
DEDIAI	South Atlantic Ocean	-0.74%	-18.09%
	North Pagific Ocean	-2.32%	-7.72%
	South Desifie Ocean	-5.54%	-12.87%
	South Facilie Ocean	-4.91%	-11.19%

	Indian Ocean	-4.48%	-11.14%
	Southern Ocean	0.62%	1.95%
	Arctic Ocean	4.61%	-7.13%
Macroecological	North Atlantic Ocean	-19.03%	-49.62%
-	South Atlantic Ocean	-6.20%	-29.42%
	North Pacific Ocean	-13.43%	-53.60%
	South Pacific Ocean	-8.69%	-27.16%
	Indian Ocean	-8.23%	-30.76%
	Southern Ocean	-5.30%	3.47%
	Arctic Ocean	8.09%	-11.25%
Ensemble mean	North Atlantic Ocean	-12.36%	-31.71%
	South Atlantic Ocean	-5.01%	-14.29%
	North Pacific Ocean	-8.53%	-25.54%
	South Pacific Ocean	-6.30%	-19.20%
	Indian Ocean	-4.69%	-20.38%
	Southern Ocean	-2.93%	19.15%
	Arctic Ocean	48.33%	81.99%

47 Figure S1 Earth system model projections for sea surface temperature (SST) across ocean basins
48 under climate change (RCP2.6 and RCP8.5) for 1970-2100. SST trends in degree °C relative to
49 1990-1999.

Figure S2. Earth system model projections for net primary production (NPP) across ocean basins
under climate change (RCP2.6 and RCP8.5) for 1970-2100. Trends are relative (%) to the
average of 1990-1999.

Figure S3. Individual model projections for total marine animal biomass across ocean basins under climate change (Emissions scenarios RCP2.6 and RCP8.5) for 1970-2100. Vertical grey line separates historical trends (1970-2005) and future projections (2006-2100). All trends are relative (%) to the average of 1990-1999.

55

Figure S4. Individual model projections for total marine animal biomass in the Arctic Ocean and Southern Ocean without DBEM under RCP2.6 and RCP8.5 for 1970-2100. DBEM is excluded to visualize temporal trends of the other ecosystem models in the polar ocean basins. Vertical grey line separates historical trends (1970-2005) and future projections (2006-2100). All trends are relative (%) to the average of 1990-1999.

Figure S5. Variability in projections of total marine animal biomass as mean standard deviation
due to different Earth system models and different ecosystem models under RCP2.6 (blue) and
RCP8.5 (red). A: Earth system model variability. B: Marine ecosystem model variability.

Figure S6. Model projections for marine animal biomass of three size ranges across ocean basins under climate change for the emissions scenario RCP2.6. Green: small marine animals <10cm (n-6); orange: medium-sized marine animals 10–30cm (n=8); black: large marine animals >30cm (n=8). All changes are the average of the 2090s relative to the 1990s. Boxplots: the upper and lower hinges correspond to the 1st and 3rd quartiles; the upper/lower whisker extends to the highest/lowest value that is within 1.5 times the interquartile range; horizontal line within the box corresponds to the median; diamonts represents the mean. Outlier dots are representing data beyond the end of the whiskers.

88

Figure S7. Climate change mitigation effect (RCP2.6 – RCP8.5) on model projections of total marine animal biomass. Vertical dashed line: target

90 year (2030) for most UN Sustainable Development Goals.